·ÎÁ ¼öºÐÅ©¸²
·ÎÁ ¸¶½ºÅ©
°Ô½Ã±Û º¸±â
¾Ö±â»Ô¼Ò¶Ë±¸¸® À¯·¡ CopA3ÇÕ¼º ÆéŸÀ̵åÀÇ Ç׿°Áõ È¿´É¿¡ °üÇÑ ¿¬±¸ (Çѱ¹»ý¸í°úÇÐȸÁö 2013³â 1¿ù ÃÖÁ¾°ÔÀç ³í¹®)
Date : 2013-02-27
Name : ±â¼ú¿¬±¸¼Ò File : book1.jpg
Hits : 9573
CopA3¸¦ ÀÌ¿ëÇÏ¿© ÇǺΠ¿°Áõ¿¡ ´ëÇÏ¿© ¿¬±¸¸¦ ÇÏ¿´´Ù. »êÈ­Áú¼Ò¿Í cytokineÀÇ »ý»êÀº ¸é¿ª¼¼Æ÷ÀÇ ´ëÇ¥ÀûÀο°ÁõÀÎÀÚÀÌ´Ù. ¼¼Æ÷´Â LPS ó¸® ÈÄ ÇÑ ½Ã°£ µÚ¿¡ CopA3¸¦ ó¸®ÇÏ¿´´Ù. ¼¼Æ÷ µ¶¼ºÀÌ ³ªÅ¸³ªÁö ¾Ê´Â ³óµµÀÎ 5, 25, 50, 100 ¥ìg/ml¸¦ »ç¿ëÇÏ¿´´Ù. CopA3´Â NO, TNF-¥á, IL-1¥â, IL-6, iNOS, COX-2ÀÇ »ý¼ºÀ» ÀúÇØ ½ÃÄ×´Ù. iNOS¿Í COX-2 ¿ª½Ã 100 ¥ìg/mlÀÇ ³óµµ¿¡¼­ °¢°¢ 54%, 65%°¡ ÀúÇØ°¡ µÇ¾ú´Ù. °Ô´Ù°¡ CopA3´Â ¿°Áõ¼º »çÀÌÅä Ä«ÀÎÀÎ TNF-¥á, IL-1¥â, IL-6ÀÇ »ý¼ºÀ» °¨¼Ò ½ÃÄ×´Ù. ÀÌ·¯ÇÑ °á°ú·Î CopA3´Â ¿°Áõ ¿¹¹æ°ú Ä¡·á¿¡ È¿°úÀûÀÓÀ» È®ÀÎ ÇÒ ¼ö ÀÖ¾ú´Ù.

¼­ ·Ð

¿°Áõ ¹ÝÀÀÀº »ýü³ª Á¶Á÷¿¡ ¹°¸®Àû ÀÛ¿ëÀ̳ª È­ÇÐÀû ¹°Áú, ¼¼±Õ °¨¿° µîÀÇ ¾î¶°ÇÑ ±âÁúÀû º¯È­¸¦ °¡Á®¿À´Â ħ½ÀÀÌ °¡ÇØÁú ¶§ ±× ¼Õ»ó ºÎÀ§¸¦ ¼öº¹ Àç»ýÇÏ·Á´Â ±âÀüÀ̸ç[8], ¿°Áõ ¹ÝÀÀÀ» À¯¹ß½ÃÅ°´Â ¸Å°³ ¹°Áú·Î È°¼º»ê¼Ò(free radicals), »êÈ­Áú¼Ò(nitric oxide, NO), prostaglandin µîÀÌ ÀÖ´Ù[24]. ÀÏ´Ü ÀÚ±ØÀÌ °¡ÇØÁö¸é ±¹¼ÒÀûÀ¸·Î ¿°Áõ¼º ¼ººÐ°ú °°Àº Ç÷°ü È°¼º ¹°ÁúÀÌ À¯¸®µÇ¾î Ç÷°ü Åõ°ú¼ºÀÌ Áõ´ëµÇ¸é¼­ ¿°ÁõÀ» À¯¹ßÇÏÁö¸¸ Áö¼ÓÀûÀÎ ¿°Áõ¹ÝÀÀÀº µµ¸®¾î Á¡¸·¼Õ»óÀ» ÃËÁøÇÏ°í, ±× °á°ú ÀϺο¡¼­´Â ¿©·¯ ÁúȯÀ» ¹ß»ý½ÃÅ°´Â ¿øÀÎÀÌ µÈ´Ù[22]. ´ë½Ä¼¼Æ÷´Â ¼±Ãµ¸é¿ª»Ó¸¸ ¾Æ´Ï¶ó ȹµæ¸é¿ª µî ´Ù¾çÇÑ ¼÷ÁÖ¹ÝÀÀ¿¡ °ü¿©ÇÏ¿© Ç×»ó¼º À¯Áö¿¡ °ü¿©ÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç, ¿°Áõ¹ÝÀÀ½Ã¿¡´Â nitric oxide (NO)¿Í cytokineÀ» »ý»êÇÏ¿© °¨¿°Ãʱ⿡ »ýü¹æ¾î¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù[7]. NOÀÇ ÇÕ¼º È¿¼Ò´Â eNOS, nNOS, iNOS°¡ Àִµ¥, ÀÌ Áß iNOS´Â Ä®½·ÀÇ ³óµµ¿¡ »ó°ü¾øÀÌ ´ë½Ä¼¼Æ÷¿¡¼­ TNF-¥á, IL-1¥â, IFN-¥ã¿Í °°Àº ¿°Áõ¼º Àڱؿ¡ ÀÇÇØ À¯µµµÇ´Â °ÍÀ¸·Î ¾Ë·ÁÁ³À¸¸ç, ƯÈ÷ LPS 󸮽à ´Ù·® »ý¼ºµÇ´Â °ÍÀ¸·Î ¾Ë·ÁÁ³´Ù. TNF-¥á´Â ¿°Áõ°ú ¸é¿ª¹ÝÀÀÀÇ Áß¿äÇÑ ¸Å°³¹°ÁúÀ̸ç, ´Ù¾çÇÑ ¼¼Æ÷ÀÇ ¼ºÀå°ú ºÐÈ­¸¦ Á¶ÀýÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ³´Ù. ¶ÇÇÑ ¼¼Æ÷¿¡ µ¶¼ºÀ» ÀÏÀ¸Å°°í, Ç÷°ü Çü¼º, °ñ Èí¼ö, Ç÷Àü »ý¼ºÀ» ÃËÁøÇÏ°í lipogenetic ´ë»ç¸¦ ¾ïÁ¦ÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ³´Ù[1].
°ïÃæÀº µ¿¹°±º Áß¿¡¼­ °¡Àå ¸¹Àº »ý¹°±ºÀ¸·Î¼­, Àü ¼¼°èÀûÀ¸·Î 180¸¸ Á¾ÀÌ ¼­½ÄÇÏ°í ÀÖ°í, ¿ì¸®³ª¶ó¿¡¼­¸¸ 1¸¸ 2õ Á¾À̳ª ¼­½ÄÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. °ïÃæÀº »ý¹° ´Ù¾ç¼ºÀÌ ¸Å¿ì dzºÎÇϸç, ȯ°æ¿¡ µû¶ó¼­ ÀÌ °ïÃæÀÇ ´Ù¾ç¼ºÀÌ °áÁ¤µÇ°í ÀÌ¿¡ °ü·ÃµÈ ¿©·¯ °¡Áö °ïÃæ À¯·¡ÀÇ »ý¸®È°¼º ¹°ÁúÀÇ ¾ç°ú ÁúÀÌ ´Ù¾çÇÏ°Ô º¯È­µÈ´Ù. ÃÖ±Ù¿¡´Â »õ·Î¿î ±â´É¼ºÀ» °®´Â ¾à¿ë°ïÃæ À» ¹ß°ß, »ó¿ëÈ­, »çÀ°È­, º¸±ÞÈ­ ÇÔÀ¸·Î¼­ ³ó°¡ÀÇ ¼öÀÍÀ» º¸ÀåÇÏ°í »õ·Î¿î ½ÄÀǾàÇ°À¸·Î °³¹ßÀÌ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Â Ãß¼¼ ÀÌ´Ù[17, 18].
¼Ò¶Ë±¸¸®·ù´Â ¸ñÃÊÁö¿¡¼­ ¿ìºÐÀ» ÁöÇÏ·Î ¿î¹ÝÇÏ´Â ÀÛ¿ëÀ» Çϸç, ÀÌ·¯ÇÑ ¿ìºÐÀ» ¹ß»ý¿øÀ¸·Î ÇÏ¿© Æĸ®ÀÇ ¹ß»ý ¾ïÁ¦, Åä¾çÀÇ ºñ¿ÁÈ­¿Í ¹°¸®¼º °³¼±, ¿ìºÐ°ú ÇÔ²² ¹è¼³µÈ °¡Ãà³»ºÎ±â»ýÃæ ¹æÁ¦ µîÀÇ È¿°ú°¡ ÀÖ´Ù[2, 3]. ¶ÇÇÑ ¼Ò¶Ë±¸¸®°¡ È°µ¿ÇÑ Åä¾çºÐ»êºÐ¼®(analysis of variance, ANOVA) ÈÄ tukey test·Î ´ÙÁߺñ±³¸¦ ½Ç½ÃÇÏ¿´´Ù.

°á°ú ¹× °íÂû

Raw 264.7 cell¿¡ ´ëÇÑ µ¶¼º
¸¶¿ì½º ´ë½Ä¼¼Æ÷ÀÎ Raw 264.7 cell¿¡ ´ëÇÑ CopA3ÀÇ ¼¼Æ÷µ¶¼ºÀ» È®ÀÎÇϱâ À§ÇÏ¿© MTT assay¸¦ ¼öÇàÇÏ¿´´Ù. CopA3¸¦ 5, 10, 25, 50, 100, 500 ¥ìg/ml ³óµµ·Î 24½Ã°£ µ¿¾È ó¸®ÇÑ °á°ú 100 ¥ìg/mlÀÇ ³óµµ±îÁö´Â µ¶¼ºÀÌ ³ªÅ¸³ªÁö ¾Ê¾ÒÁö¸¸, 500 ¥ìg/mlÀÇ ³óµµ¿¡¼­´Â ¼¼Æ÷ÀÇ »ýÁ¸À²À» 95% °¨¼Ò ½ÃÄ×´Ù(Fig. 1). CopA3´Â 100 ¥ìg/ml ÀÌÇÏÀÇ ³óµµ¿¡¼­´Â ¼¼Æ÷µ¶¼ºÀÌ ³·¾Æ ¼¼Æ÷ÀÇ »ýÁ¸À²¿¡ ¿µÇâÀ» ÁÖÁö ¾Ê´Â´Ù´Â »ç½ÇÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. Áï, CopA3ÀÇ Ç׿°Áõ È¿°ú°¡ ´Ü¼øÇÑ ¼¼Æ÷ÀÇ »ç¸ê¿¡ ÀÇÇÑ ¼¼Æ÷ ¿°Áõ¼º ¸Å°³¹°ÁúÀÇ »ý¼º¾ïÁ¦°¡ ¾Æ´Ï¶ó CopA3ÀÇ °íÀ¯ÇÑ È¿°ú¶ó´Â Á¡À» ÀǹÌÇÑ´Ù.
Fig. 1. Cell viability of CopA3 on Raw 264.7 cell. Raw 264.7 cells were treated with 5,10, 25, 50, 100, 500 ¥ìg/ml of CopA3 dissolved in media for 1 hr prior to the addition of LPS (1 ¥ìg/ml), and the cells were further incubated for 24 hr. Data represent the mean¡¾S.D. with eight separate experiments. Data represent the mean¡¾S.D. with three separate experiments.


Nitric oxide (NO) »ý¼º¾ïÁ¦ È¿°ú
NO´Â ü³» ¹æ¾î±â´É, ½ÅÈ£Àü´Þ ±â´É, ½Å°æµ¶¼º, Ç÷°ü È®Àå µîÀÇ ´Ù¾çÇÑ »ý¸®±â´ÉÀ» °¡Áö°í ÀÖÀ¸¸ç, 3Á¾·ùÀÇ NOS (neuronal NO synthase (nNOS), endothelial NO synthase (eNOS), inducible NO synthase (iNOS))¿¡ ÀÇÇØ ÇÕ¼ºµÈ´Ù. À̵é NOS Áß iNOS¿¡ ÀÇÇÑ NO »ý¼ºÀÌ Àý´ëÀûÀ¸·Î ¸¹À¸¸ç ÀÌ´Â º´¸®ÀûÀ¸·Î Áß¿äÇÑ ÀÛ¿ëÀ» ÇÑ´Ù[23]. LPS Àڱؿ¡ ÀÇÇØ ¹ßÇöµÈ iNOS´Â ¸¹Àº ¾çÀÇ NO¸¦ »ý¼ºÇÏ°Ô µÇ¸ç, ÀÌ¿¡ ÀÇÇÑ ¼¼Æ÷µ¶¼ºÀº ¿°Áõ¹ÝÀÀ, ¼¼Æ÷ÀÇ µ¹¿¬º¯ÀÌ ¹× Á¾¾ç¹ß»ý µî¿¡µµ °ü¿©ÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ¿°Áõ¹ÝÀÀ°ú °ü·ÃµÈ Á¶Á÷ ¼Õ»ó¿¡¼­ NO¿Í iNOSÀÇ ¹ßÇöÀÌ Áõ°¡µÇ¾î ÀÖÀ½ÀÌ º¸°íµÇ¾î ÀÖ´Ù[15, 16, 21].
NO»ý¼º¿¡ ´ëÇÑ CopA3ÀÇ È¿°ú¸¦ ¾Ë¾Æº¸¾Ò´Ù. »ý¼ºµÈ NO¾çÀ» griess ½Ã¾àÀ» ÀÌ¿ëÇÏ¿© ¼¼Æ÷¹è¾ç¾× Áß¿¡ Á¸ÀçÇÏ´Â NO2ÀÇ ÇüÅ·ΠÃøÁ¤ÇÏ¿´´Ù. ±× °á°ú Raw 264.7 cell¿¡ LPS¸¦ ó¸®ÇÑ ÈÄ CopA3¸¦ ó¸®ÇÑ NO »ý¼º·®ÀÇ º¯È­´Â Fig. 2¿¡ ³ªÅ¸³»¾ú´Ù. LPS ó¸® ÈÄ NO »ý¼º·®Àº Á¤»ó¼¼Æ÷¿¡ ºñÇÏ¿© ¾à 4¹è ÀÌ»ó Áõ°¡µÇ¾ú´Ù. CopA3´Â 50 ¥ìg/mlÀÇ 35% ÀÌ»óÀÇ °¨¼ÒÀ²À» ³ªÅ¸³»¾úÀ¸¸ç, 100 ¥ìg/mlÀÇ ³óµµ¿¡¼­´Â 80% ÀÌ»óÀÇ NO »ý¼º ÀúÇظ¦ ÀÏÀ¸Å°´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.
Fig. 2. Inhibitory effects of CopA3 on the production of nitric oxide Raw 264.7 cells. Raw 264.7 cells were cultured with LPS (1 ¥ìg/ml) in the presence or absence of CopA3 for 24 hr to determine the level of NO. Nor: LPS not induced group, Con: LPS induced group. The data represent the mean¡¾SD of three separate experiments (significant as compared to control. *p<0.05).


Ç×±ÕÈ°¼º½ÇÇè¿¡ ¾²ÀÎ ¹Ì»ý¹°Àº Staphylococcus aureus(Ȳ»öÆ÷µµ»ó±¸±Õ), Staphylococcus epidermidis(ÇǺλóÀç±Õ), Escherichia coli(´ëÀå±Õ), Propionibacterium acnes(¿©µå¸§¿øÀαÕ), Streptococcus mutans(ÃæÄ¡¿øÀαÕ), Pityrosporum ovale(ºñµëÀ¯¹ß±Õ), Candida albicans (Ä­µð´ÙÁõ±Õ)µî ÃÑ 7°¡ÁöÀÌ´Ù. Æò°¡¹æ¹ýÀº µð½ºÅ©È®»ê¹ý(Disk paper diffusion)À» ½ÃÇàÇÏ¿© Clear zoneÀ» È®ÀÎÇÏ´Â ¹æ¹ýÀ¸·Î Ç×±ÕÈ°¼ºÀ» Æò°¡ÇÏ¿´´Ù.

TNF-¥á, IL-1¥â, IL-6 »ý¼º ¾ïÁ¦ È¿°ú
´ë½Ä¼¼Æ÷´Â µ¿¹° ü³» ¸ðµç Á¶Á÷¿¡¼­ ºÐÆ÷ÇÏ´Â ¸é¿ª¼¼Æ÷·Î¼­ ¼¼±ÕÀ̳ª À̹°ÁúÀ» Ž½Ä Á¦°ÅÇϸç, IL-1¥â, IL-6, TNF-¥á µîÀÇ ¿°Áõ ¸Å°³ ¹°ÁúµéÀ» ºÐºñÇÏ¿© Ãʱ⠿°Áõ ¹ÝÀÀ¿¡ ÁÖ¿ä ¿ªÇÒÀ» ´ã´ç ÇÑ´Ù[7, 13]. ƯÈ÷, TNF-¥á´Â ¿°Áõ¹ÝÀÀ¿¡ À־ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç macrophage¿Í mast cell µî¿¡¼­ ºÐºñµÇ¸ç, LPS¹ÝÀÀÀÇ ÁÖ¿ä ¸Å°³Ã¼·Î¼­ ³»Àç¸é¿ª¿¡ À־µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ¸ç ¸¸¼º ¿°Áõ ¹ÝÀÀ°úµµ °ü·ÃµÇ¾î ÀÖ´Ù[14]. IL-1¥â´Â T-cellÀÇ È°¼ºÈ­, B-cellÀÇ ¼º¼÷, NK cellÀÇ activity¸¦ È°¼ºÈ­ Çϸç, IL-6 ´Â ¸²ÇÁ±¸¸¦ È°¼ºÈ­½ÃÄÑ Ç×ü»ý»êÀ» Áõ°¡½ÃÅ°´Â °ÍÀ¸·Î, IL-6ÀÇ levelÀº ¿°Áõ¼º º´º¯¿¡¼­ Ç×»ó Áõ°¡ÇÏ´Â °ÍÀ¸·Î º¸°íµÇ°í ÀÖ´Ù[4]. º» ½ÇÇè¿¡¼­ LPS´Â TNF-¥á, IL-1¥â, IL-6ÀÇ »ý¼ºÀ» Áõ°¡½ÃÄ×Áö¸¸ CopA3 ó¸®ÇÑ °á°ú TNF-¥á´Â 60% »ý¼º ¾ïÁ¦¸¦ IL-1 ¥â, IL-6´Â °¢°¢ 50 ¥ìg/mlÀÇ ³óµµ¿¡¼­ 50%, 55%ÀÇ »ý¼º ¾ïÁ¦ È¿°ú¸¦ ³ªÅ¸³»¾ú´Ù(Fig. 3). ÀϹÝÀûÀ¸·Î LPS´Â macrophage¿¡ ÀÛ¿ëÇÏ¿© TNF-¥á, IL-1¥â, IL-6ÀÇ »ý¼º ºÐºñ¸¦ ÃËÁø½ÃÄÑ ¿°Áõ¹Ý ÀÀÀ» À¯µµÇÏÁö¸¸ CopA3´Â ÀÌ ¼¼ °¡ÁöÀÇ cytokineÀ» À¯ÀǼº ÀÖ°Ô ¾ïÁ¦ÇÏ¿´´Ù.
Fig. 3. Effect of CopA3 on the production of cytokines stimulated by LPS. Production of TNF-¥á (a) IL-6 (b), IL-1¥â (c) were measured in the medium of Raw 264.7 cells cultured with LPS (1 ¥ìg/ml) in the presence or absence of CopA3 for 24 hr. The amount of TNF-¥á was measured by immunoassay as described in materials and methods. Nor: LPS not induced group, Con: LPS induced group. Data represent the mean¡¾S.D. with three separate experiments. One-way ANOVA was used for comparisons of multiple group means followed by t-test (significant as compared to control. *p<0.05, **p<0.01).


iNOS, COX-2ÀÇ ´Ü¹éÁú ¹ßÇö ÀúÇØ È¿°ú
iNOS´Â Æò¼Ò¿¡´Â ¼¼Æ÷ ³»¿¡ Á¸ÀçÇÏÁö ¾ÊÀ¸³ª ÀÏ´Ü À¯µµµÇ¸é Àå½Ã°£ µ¿¾È ´Ù·®ÀÇ NO¸¦ »ý¼ºÇϸç, »ý¼ºµÈ NO´Â Ç÷°üÅõ°ú¼º, ºÎÁ¾ µîÀÇ ¿°Áõ ¹ÝÀÀÀ» ÃËÁø½Ãų »Ó¸¸ ¾Æ´Ï¶ó ¿°Áõ¸Å°³Ã¼ÀÇ »ýÇÕ¼ºÀ» ÃËÁøÇÏ¿© ¿°ÁõÀ» ½ÉÈ­½ÃÅ°´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù[12, 20]. NOÀÇ »ý¼º¿¡´Â NO synthase (NOS)°¡ ÀÛ¿ëÇÏ°Ô µÇ´Âµ¥, constitutive NO synthase (cNOS)¿Í iNOS Áß Àڱؿ¡ À¯µµµÈ iNOSÀÇ °æ¿ì ¿À·£ ±â°£ µ¿¾È ´Ù·®ÀÇ NO¸¦ »ý¼ºÇÏ°í, »ý¼ºµÈ NO´Â guanyl cyclaseÀÇ È°¼º°ú µ¿½Ã¿¡ ¼¼Æ÷µ¶¼ºÀ» ³ªÅ¸³»°Ô µÈ´Ù. µû¶ó¼­ NO·Î À¯µµ µÇ¾îÁø RAW 264.7 cell¿¡¼­ iNOSÀÇ protein levelÀÇ °¨¼Ò¸¦ È®ÀÎÀ¸·Î¼­ Ç׿°Áõ È¿°ú¸¦ ±â´ëÇÒ ¼ö ÀÖÀ¸¸ç, ¶ÇÇÑ ¼¼Æ÷¿Í °°Àº macrophage µû¸¥ monocyte¿¡¼­ TNF-¥á, IL-6 ¿Í °°Àº proinflammatory cytokineÀ» Áõ°¡½ÃÅ°´Â ¿äÀÎ Áß ÇϳªÀÎ COX-2ÀÇ protein levelÀÇ °¨¼Ò¸¦ À̲ø¾î ³¿À¸·Î¼­ Ç׿°Áõ È¿°ú¸¦ ±â´ëÇÒ ¼ö ÀÖ´Ù[19]. CopA3¿¡ ÀÇÇÑ NO »ý¼º ÀúÇØ ±âÀüÀ» È®ÀÎÇϱâ À§ÇØ western blotÀ» ½Ç½ÃÇÏ¿© iNOSÀÇ ´Ü¹éÁú ¹ßÇöÀ» ÃøÁ¤ ÇÏ¿´À¸¸ç, western blotÀ» ÀÌ¿ëÇÏ¿© COX-2ÀÇ ¹ßÇöÀ» ÃøÁ¤ÇÏ¿´´Ù. ±× °á°ú LPS¿¡ ÀÇÇØ Áõ°¡µÈ iNOS¿Í COX-2ÀÇ ´Ü¹éÁú ¹ßÇö·®ÀÌ ³óµµ ÀÇÁ¸ÀûÀ¸·Î À¯ÀǼº ÀÖ°Ô °¨¼ÒµÇ¾ú´Ù. ¥â-actinÀÇ band density ºñÀ²¿¡ µû¶ó iNOS ´Ü¹éÁú »ý¼ºÀ» 41%¿Í COX-2ÀÇ ´Ü¹éÁú ¹ßÇöÀ» 56% ÀúÇØÇÔÀ» È®ÀÎ ÇÏ¿´´Ù(Fig. 4). À̸¦ ÅëÇØ CopA3´Â iNOS, COX-2 ÀÇ »ý¼ºÀ» ÀúÇØÇÏ´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.
Fig. 4. Inhibitory effects of CopA3 on the protein levels of iNOS and COX-2 in Raw 264.7 cells. Raw 264.7 cells (5x105 cells/ml) were pre-incubated for 24 hr, and the cells were stimulated with lipopolysaccharide (1 ¥ìg/ml) in the presence of complex extracts sample (5, 25, 50, 100 ¥ìg/ml) for 24 hr. Nor: LPS not induced group, Con: LPS induced group. Data represent the mean¡¾S.D. with three separate experiments. One-way ANOVA was used for comparisons of multiple group means followed by t-test (significant as compared to control. *p<0.05, **p<0.01).


°¨»çÀÇ ±Û

º» ³í¹®Àº ³óÃÌÁøÈïû µ¿¹°À¯ÀüüÀ°Á¾»ç¾÷ÀÇ ÀÏȯÀ¸·Î ¼öÇàµÈ ¿¬±¸°á°úÀÇ ÀϺÎÀ̸ç ÀÌ¿¡ ±íÀº °¨»ç¸¦ µå¸³´Ï´Ù.

References

1. Aggarwal, B. B. 2003. Signaling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3, 745-756.
2. Bang, H. S., Lee, J. H., Kwon, O. S., Na, Y. E., Jang, Y. S. and Kim, W. H. 2005. Effects of paracoprid dung beetles (Coleoptera:Scarabaeidae) on the growth of pasture garbage and on the underlying soil. Applied Soil Ecology 29, 165-171.
3. Bornemissza, G. F. and Williams, C. H. 1970. An effect of dung beetle activity on plant yield. Pedobiologia 10, 1-7.
4. Delgado, A. V., McManus, A. T. and Chambers, J. P. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance. Neuropeptide 37, 355-361.
5. Fincher, G. T. 1981. The potential value of dung beetles in pasture ecosystems. J Ga Entomol Soc 16, 316-333.
6. Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensin like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int J Pept DOI: 10.1155/2009/136284.
7. Higuchi, M., Higashi, N., Taki, H. and Osawa, T. 1990. Cytolytic mechanism of activated macrophases. Tumor necrosis factor and L-arginine-dependent mechanism acts as synergistically as the mafor cytolytic mechanism of activated macrophages. J Immunol 144, 1425-1431.
8. Tizard, I. R. and Schubot, R. M. 2004. Veterinary immunology : An introduction. W. B. Saunders Company. U.S.
9. Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensing-like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int J Pept 136.
10. Kang, B. R., Kim, H., Nam, S. H., Yun, E. Y., Kim, S. R., Ahn, M. Y., Chang, J. S., and Hwang, J. S. 2012. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Reports 45, 85-90.
11. Kang, J. K., Hwang, J. S., Nam, H. J., Ahn, K., Seok, J. H., and Kim, S. K. 2011. The insect peptide Coprisin prevents Clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Antimicrob Agents Chemother 55, 4850-4857.
12. Kim, R. G., Shin, K. M., Chun, S. K., Ji, S. Y., Seo, S. H., Park, H. J., Choi, J. W. and Lee, K. T. 2002. In vitro anti-inflammatory activity of the essential oil from ligularia fischeri var. spiciformis in murine macrophage Raw 264.7 cells. Yakhak Hoeji 46, 343-347.
13. Lee, Y. S., Kim, H. S., Kim, S. K. and Kim, S. D. 2000. IL-6 mRNA expression in mouse peritoneal macrophages and NIH3T3 fibroblasts in response to Candida albicans. J Microbiol Biotech 10, 9-15.
14. Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. 2003. Inhibition of lipopolysaccharide inducible nitric oxide synthase, TNF-¥á and COX-2 expression by sauchinone effects on I-¥êB¥á phosphorylation, C/EBP and AP-1 activation. British J Pharmacol 139, 11-20.
15. Mori, M. 2007. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr 137, 1616-1620.
16. Palmer, R. M., Ashton, D. S. and Moncada, S. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666.
17. Park, D. S., Yoo, M. A., Xu, M. Z., Yu, H. N., Kim, J. R., Jeong, T. S. and Park, H. Y. 2004. Original articles : Screening of anti-atherogenic substances from insect resources. Korean J Pharmacogn 35, 233-238.
18. Park, K. T. and Lee, J. S. 1998. Review on insect resources for medical use in kangwon Province. Korean J Apiculture 13, 79-92.
19. Suh, Y. J. 2002. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities.: A shor review. Food Chem Toxicol 40, 1091-1097.
20. Tezuka, Y., Irikawa, S., Kaneko, T., Banskota, A. H., Nagaoka, T., Xiong, Q., Hase, K. and Kadota, S. 2001. Screening of chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of zanthoxylum bungeanum. J Ethnopharmacol 77, 209-217.
21. Weisz, A., Cicatiello, L. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-¥ã, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J 316, 209-215.
22. Willoughby, D. A. 1975. Human arthritis applied to animal models. Towards a beter therapy. Annals of the rheumatic disease. Ann Rheum Dis 34, 471-478.
23. Won, S. J., Park, H. J. and Lee, K. T. 2008. Inhibition of LPS induced iNOS, COX-2 and cytokines expression by slidroside through the NF-¥êB inactivation in RAW 264.7 cells Korean J Pharmacogn 39, 110-117.
24. Yun, H. J., Heo, S. K., Lee, Y. T., Park, W. H. and Park, S. D. 2008. Anti-inflammatory effect of Evodia Officinalis DODE in mouse macrophage and human vascular endotherial cells. Korean J Herbology 23, 29-38.